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The Ice Cream Problem

Question

Suppose we have k flavors of ice cream and n kids. How many ways
can we serve the n kids using all k flavors?

We will answer this question, and more, using

Stirling Numbers of the Second Kind!
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Sets

Definition

A set A is a collection of objects called elements.

Examples

1. {a, b, c , d},
2. the set of even numbers {0, 2,−2, 4,−4, 6,−6, . . . }, and
3. the set of prime numbers {2, 3, 5, 7, 11, 13, 17, . . . }.

Definition

Given A is a set, we let |A| denote the number of elements of A, or
the cardinality of A.
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Combinations

Definition

The number of ways to choose k objects from n things is denoted
(n
k

)
and is given by the formula(

n

k

)
=

n!

k!(n − k)!
.

One can think about this via the following example:

Example

There are
(7
3

)
=

(7
4

)
ways to rearrange the numbers in the word

0001111, where either you choose where the three zeros go, or where
the four ones go.
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Partitions

Definition

A partition of a set A is a way of “distributing” the elements of A
into nonempty subsets.

We can better understand this using an example:

Example

The set {a, b, c} has 5 partitions:

1. {a}, {b}, {c},
2. {a, b}, {c},
3. {a, c}, {b},
4. {a}, {b, c}, and
5. {a, b, c}.
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Stirling Numbers of the Second Kind

Definition

Stirling numbers of the second kind, notated
{n
k

}
, are the number of

ways to partition n objects into k disjoint, nonempty sets.

Example

Given the set {a, b, c , d}, if we wanted to find the number of ways to
distribute the letters into 3 nonempty subsets, such as:
{a, b}, {c}, {d}
{a, c}, {b}, {d}
...
we would obtain

{4
3

}
= 6
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Stirling Number Identities

Identity 1{n
1

}
= 1.

Proof.

Given a set with n elements, the only way to create one nonempty
subset using all of the elements would be the set itself.

Identity 2{ n
n−1

}
=

(n
2

)
.

Proof.

Considering a set with n elements that we want to distribute into
n − 1 nonempty subsets, using the Pigeonhole Principle, we know
that 2 elements must be in the same subset. The number of ways to
choose these 2 elements from our total n is

(n
2

)
.
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Pascal’s Identity

Identity 3(n
k

)
+
( n
k+1

)
=

(n+1
k+1

)
.

Proof by Example

Suppose we have 18 students, and we want to choose 11 for a
committee. Jane, one of the 18 students, has two options, she can
either be in the committee or not in the committee. If she were in the
committee, we would have to pick 10 out of the other 17 to also be in
the committee. Otherwise, we have to pick 11 out of the other 17.
This can be written out as(

17

10

)
+

(
17

11

)
=

(
18

11

)
.
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Pascal’s Identity’s for Stirling Numbers

Given Pascal’s Identity, we wonder if a similar identity could exist for
Stirling numbers of the second kind. From this, we come with the
proposition:

Proposition{n+1
k

}
=

{ n
k−1

}
+ k

{n
k

}
.

Proof

Suppose we have set with n + 1 elements, and we want to distribute
them into k nonempty subsets. For a specific element, there are two
cases: it’s either alone in a subset or in a subset with other elements.
If it’s in its own subset, we have to distribute the other n elements
into k − 1 subsets. Otherwise, we first distribute the other n elements
into all k subsets, then multiply by k to choose which subset to put
our original element in.
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Stirling Numbers in the Ice Cream
Problem

Problem

How many ways are there to give n kids k ice creams using all of the
flavors?

Solution

We distribute the n kids into k subsets, where each subset gets a
different flavor. Then, we have to multiply this by k! since the flavors
distinct and ordered

k!

{
n

k

}
.

This is unsatisfying to us though, because we still don’t know how to
solve for

{n
k

}
.
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Principle of Inclusion-Exclusion

Diagram

Figure: In order to find |A ∪ B ∪ C |, we can consider |A|+ |B|+ |C |, but then
we’ve overcounted by adding |A ∩ B|, |B ∩ C |, and |A ∩ C |. We have to subtract
these, so we get |A|+ |B|+ |C | − |A ∩ B| − |B ∩ C | − |A ∩ C |. Then, we’ve
undercounted |A ∩ B ∩ C | so we have to add it back. Finally, we obtain

|A ∪ B ∪ C | = |A|+ |B|+ |C | − |A ∩ B| − |B ∩ C | − |A ∩ C |+ |A ∩ B ∩ C |.
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Principle of Inclusion-Exclusion

The previous slide demonstrates and motivates the Principle of
Inclusion-Exclusion (PIE).

Principle

PIE helps us determine the number of elements in the union of a
group of sets. It states that: Given finite sets A1, . . . ,An, one has the
following identity:

|⋃n
i=1 Ai |=

∑n
i=1 |Ai |−

∑
1≤i<j≤n |Ai∩Aj |+

∑
1≤i<j<j≤n |Ai∩Aj∩Ak |−···+(−1)n+1|A1∩···∩An |

Where we add the cardinality of each of the sets and alternate
subtracting and adding the intersections when we overcount and
undercount.
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PIE in the Ice Cream Problem

The total amount of ways to give n kids k flavors of ice cream is kn.
We multiply k by itself n times because for each of the n kids there
are k possibilities.
This overcounts the cases where we don’t use at least one of the
flavors, since the problem asks for the cases were we use all of the
flavors.
We first subtract the cases for each of the k flavors where we don’t
use that flavor:

kn −
(
k

1

)
(k − 1)n

But then we’ve subtract the cases where we don’t use two of the
flavors twice, so we have to add those cases back:

kn −
(
k

1

)
(k − 1)n +

(
k

2

)
(k − 2)n

.
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Solution to the Ice Cream Problem
Without Stirling Numbers

Solution

This pattern continues, so in the end, we get that the number of ways
to give n kids k flavors with all flavors used is:

kn −
(
k

1

)
(k − 1)n +

(
k

2

)
(k − 2)n − . . .+ (−1)k

(
k

k

)
(k − k)n

We can also write this as:

k∑
r=0

(−1)r
(
k

r

)
(k − r)n

.
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Stirling Numbers of the Second Kind
Formula

Now that we’ve solved the problem without Stirling numbers, we can
set them equal to each other and isolate

{n
k

}
to find a formula for

Stirling numbers of the second kind.

k!

{
n

k

}
=

k∑
r=0

(−1)r
(
k

r

)
(k − r)n

. Dividing both sides by k!, we get:

Formula {
n

k

}
=

1

k!

k∑
r=0

(−1)r
(
k

r

)
(k − r)n

.
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Stirling Numbers Formula Applied

Problem

Assume PRIMES Circle has 20 students and they are serving 5
different flavors of ice cream. How many ways are there to distribute
the ice cream using all of the flavors?

Solution

We can just plug these numbers into our formula now!

5!

{
20

5

}
= 5!× 1

5!

5∑
r=0

(−1)r
(
5

r

)
(5− r)20

= 89904730860000

WOAH!
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Thank you for listening!

Any Questions?
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